The correct option is D 2(bx+cy)=2a2−d2
A(b,c) lies on x2+y2=a2
So, b2+c2=a2 ------(1)
Let, B(x1,y1) and c (x2,y2) lies on circle x2+y2=a2
So, AB=AC=d and x21+y21=a2=y22+x22
d=√b2+x21−2bx1+y21+c2−2y1c=√b2+x12−2bx2+c2+y22−2y2c -----(3)
(x21−x22)−2b(x1−x2)+y21−y22−2c(y1−y2)=0
b(x1−x2)+c(y1−y2)=0 -----(2)
So, eqn of of BC is
y−y1=(x−x1)(y1−y2)(x1−x2)
y−y1=(x−x1)(−bc)
cy+bx=ey1+bx1
=a2+b2+c2−d22 [from (3)]
cy+bx=(2a2−d2)22
⇒2(bx+cg)=2a2−d2