∂u∂x=2xy2(x+y)−x2y2(x+y)2=y2(x2+2xy)(x+y)2
d2u∂x2=(2xy2+2y3)(x+y)2−2(x+y)(x2y2+2xy3)(x+y)4
d2u∂y∂x=(2yx2+4xy2)(x+y)2−2(x2y2+2xy3)(x+y)(x+y)4
xd2u∂x2+yd2y∂y∂x∂u∂x=(2x2y2+2xy3)(x+y)2−2(x+y)2(x2y2+2xy3+(2y2x2+2xy3)(x+y)2)(x+y)4
=y2(x2+2xy)(x+y)2
=2(x2y2+2xy3)x2y2+2xy3
=2