wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Matrix -Match type

Match the elements of List I with the elements of List II and choose the correct match:
List-IList-II
A) 0e4xsin5x dxP. 3
B) 82[x2]dx[x220x+100]+[x2]
Where [.] is greatest integer function x
Q. 541
C) π20[xncosx+nxn1sinx]dx
Where nN
R. 120
D) 0x5exdxS. (π2)n

A
AQ,BP,CS,DR
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
AP,BQ,CR,DS
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
AQ,BP,CR,DS
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
AP,BQ,CS,DR
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B AQ,BP,CS,DR
A) I=0e4xsin5x dx
Applying integration by parts,
=[sin5x.e4x4]005cos5x.e4x4dx

=0+540e4xcos5xdx
Again applying integration by parts,

I=54[cos5xe4x4]05405sin5xe4x4dx

I=54[014]25160e4xsin5xdx

I=5162516I
I=541


B) 82[x2]dx[x220x+100]+[x2]

I=82[x2]dx[(x10)2]+[x2] .....(1)

I=82[(10x)2]dx[x2]+[(10x)2] ....(2) (baf(x)dx=baf(a+bx)dx)

Adding (1) and (2),
2I=821dx
2I=[x]82
I=3

C) I=π20(xncosx+nxn1sinx)dx
Assume, xnsinx=txncosx+nxn1sinxdx=dt
I=(π2)n0dt
I=[t](π2)n0

I=(π2)n


D) I=0x5exdx

I=[x5ex1]005x4ex1dx

I=0+50x4exdx

I=5[x4ex1]0504x3ex1dx

I=0+200x3exdx

I=20[x3ex1]02003x2ex1dx

I=600x2exdx

I=60[x2ex1]06002xex1dx

I=0+1200xexdx

I=120[xex1]01200ex1dx

I=1200exdx

I=120

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Building a Wave
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon