The correct option is
B A−Q,B−P,C−S,D−RA) I=∫∞0e−4xsin5x dxApplying integration by parts,
=[sin5x.e−4x−4]∞0−∫∞05cos5x.e−4x−4dx
=0+54∫∞0e−4xcos5xdx
Again applying integration by parts,
I=54[cos5xe−4x−4]∞0−54∫∞0−5sin5xe−4x−4dx
I=54[0−1−4]−2516∫∞0e−4xsin5xdx
I=516−2516I
⇒I=541
B) ∫82[x2]dx[x2−20x+100]+[x2]
I=∫82[x2]dx[(x−10)2]+[x2] .....(1)
I=∫82[(10−x)2]dx[x2]+[(10−x)2] ....(2) (∫baf(x)dx=∫baf(a+b−x)dx)
Adding (1) and (2),
2I=∫821dx
⇒2I=[x]82
⇒I=3
C) I=∫π20(xncosx+nxn−1sinx)dx
Assume, xnsinx=t⇒xncosx+nxn−1sinxdx=dt
I=∫(π2)n0dt
I=[t](π2)n0
I=(π2)n
D) I=∫∞0x5e−xdx
I=[x5e−x−1]∞0−∫∞05x4e−x−1dx
I=0+5∫∞0x4e−xdx
I=5[x4e−x−1]∞0−5∫∞04x3e−x−1dx
I=0+20∫∞0x3e−xdx
I=20[x3e−x−1]∞0−20∫∞03x2e−x−1dx
I=60∫∞0x2e−xdx
I=60[x2e−x−1]∞0−60∫∞02xe−x−1dx
I=0+120∫∞0xe−xdx
I=120[xe−x−1]∞0−120∫∞0e−x−1dx
I=120∫∞0e−xdx
⇒I=120