The correct option is D 4/e.
y=(x−1)2ex
dydx=(x−1)2.ex+2(x−1)ex
=ex(x2−2x+1+2x−2)
dydx=ex(x2−1)
For maxima or minima,
dydx=0
⇒ex(x2−1)=0
⇒x=1,−1 (∵ex cannot be 0.)
Now, d2ydx2=e(x)2x+(x2−1)ex
⇒d2ydx2=ex(x2+2x−1)
⇒d2ydx2=−2e<0 at x=−1
Hence, x=−1 is point of maxima.
Maximum value =4e