The correct option is A 3.99
Let 20 observations be x1,x2,⋯⋯x19,s (wrong series)
Here,s is the incorrect observation
Mean=19∑i=1xi+920=10
⇒19∑i=1xi=191 ⋯(1)
Let series with correct observations be
x1,x2,x3,⋯⋯,x19,x20
Now, ¯¯¯x(Corrected mean)=19∑i=1xi+x2020=191+1120=20220=10.1
Variance of wrong series=4
⇒Variance=19∑i=1(xi)2+s220−(¯¯¯x)2=4
⇒19∑i=1(xi)2=(104)(20)−81
⇒19∑i=1(xi)2=1999 ⋯(2)
Correct variance
=19∑i=1(xi)2+(x20)220−(10.1)2
=1999+(11)220−(10.1)2
=106−102.01=3.99