The correct option is C m+xyx
Let x1,x2,x3,...,xnbe 'n' observations.
⇒m=x1+x2+x3+...+xnn
Now , according to question, the observations becomes
x1x+y,x2x+y,x3x+y,...,xnx+y
Therefore, new mean is
m′=x1x+y+x2x+y+x3x+y+...+xnx+yn
⇒m′=1x(x1+x2+x3+...+xn)+nyn
⇒m′=1xx1+x2+x3+...+xnn+y
⇒m′=1x(m)+y
⇒m′=m+xyx
Option C is correct.