Mean of 'n' items is ¯x. If these n items are successively increased by 2,22,23,.... 2n, then the new mean is?
(x1+x2+........+xnn)=¯xnewmean((x2+2)+(x2+22)+............+(xn+2n)n)=(x1+x2+........+xnn)+(2+22+........+2nn)=¯x+2×((1−2n1−2))×(1n)=¯x+(2n+1−2n)=¯x+2n+1n−(2n)