1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Reversing the Terms
Minimise and ...
Question
Minimise and Maximise
Z
=
x
+
2
y
Subject to
x
+
2
y
≥
100
,
2
x
−
y
≤
0
,
2
x
+
y
≤
200
;
x
,
y
≥
0
Open in App
Solution
Minimise and Maximise
Z
=
x
+
2
y
Subject to
x
+
2
y
≥
100
,
2
x
−
y
≤
0
,
2
x
+
y
≤
200
;
x
,
y
≥
0
x
+
2
y
=
100
x
0
100
y
50
0
2
x
−
y
=
0
x
0
50
y
0
100
2
x
+
y
=
200
x
100
0
y
0
200
Corner Points
Value of
Z
=
x
+
2
y
(
0
,
200
)
400
(
0
,
50
)
100
(
20
,
40
)
100
(
50
,
100
)
250
∴
Z
=
400
is maximum at
(
0
,
200
)
Also,
Z
is minimum at two points
(
0
,
50
)
and
(
20
,
40
)
∴
Z
=
100
is minimum at all points joining
(
0
,
50
)
and
(
20
,
40
)
.
Suggest Corrections
0
Similar questions
Q.
Minimise and Maximise
Z
=
x
+
2
y
subject to
x
+
2
y
≥
100
,
2
x
−
y
≤
0
,
2
x
+
y
≤
200
;
x
,
y
≥
0
Q.
Minimise and Maximise Z = 5
x
+ 10
y
subject to
.