Minimum value of the expression (4sin2θ+12cosec2θ−13) is equal to
Open in App
Solution
(4sin2θ+12cosec2θ−13) =4[sin2θ+cosec2θ]+8cosec2θ−13 =4[(sinθ−cosec θ)2+2]+8cosec2θ−13 =4(sinθ−cosec θ)2+8cosec2θ−5 Since, (sinθ−cosec θ)2≥0,cosec2θ≥1 Hence, minimum value will appear when sinθ=cosec θ⇒sinθ=±1 So, minimum value will be 8−5=3