Multiply (y−8) and (3y−4).
Find the equation to the circle which passes through the origin and has its center on the line x + y + 4 = 0 and cuts the circle x2+y2−4x+2y+4=0 orthogonally.
Add: 5+y−3y2+2y3,−8+3y+7y3 and 3−8y−4y3+2y2
Factorization:
9(2x−3y)2−12(2x−3y)(2x+3y)+4(2x+3y)2
Simplify combining like terms:
(i) 21b − 32 + 7b − 20b
(ii) − z2 + 13z2 − 5z + 7z3 − 15z
(iii) p − (p − q) − q − (q − p)
(iv) 3a − 2b − ab − (a − b + ab) + 3ab + b − a
(v) 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2
(vi) (3 y2 + 5y − 4) − (8y − y2 − 4)