The correct option is C f(x) is continuous but not differentiable at x=2
f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩x∫0(5+|1−t|)dt,x>25x+1,x≤2⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭
For x>2
f(x)=x∫0(5+|1−t|)dt=1∫05+(1−t)dt+x∫1(5−(1−t))dt
=1∫0(6−t)dt+x∫1(4+t)dt
=1+4x+x22
∴f(x)=⎧⎪⎨⎪⎩x22+4x+1,x>25x+1,x≤2⎫⎪⎬⎪⎭
limx→2−f(x)limx→2−(5x+1)=11,
limx→2+f(x)=limx→2+(x22+4x+1)=11
f(2)=11
∴f(x) is continuous at x=2
Hence f(x) is everywhere continuous.
f′(x)={x+4,x>25,x≤2}
At x=2
L.H.D. =5, R.H.D. =6
∴f(x) is not differentiable at x=2