We know that
tan−1x+tan−1y=tan−1x+y1−xy,xy<1
Taking L.H.S
tan−1(12)+tan−1(211)
=tan−1⎛⎜
⎜
⎜⎝12+2111−12×211⎞⎟
⎟
⎟⎠
=tan−1⎛⎜
⎜
⎜⎝1(11)+2(2)2×111(11)−111⎞⎟
⎟
⎟⎠
=tan−1⎛⎜
⎜
⎜⎝11+42×1111−111⎞⎟
⎟
⎟⎠
=tan−1⎛⎜
⎜
⎜⎝152×111011⎞⎟
⎟
⎟⎠=tan−1(1520)
=tan−1(34)
Hence Proved.