Question
Let k be a positve real number and let
A=⎡⎢
⎢⎣2k−12√k2√k2√k1−2k−2√k2k−1⎤⎥
⎥⎦ and B=⎡⎢
⎢⎣−22k−12√k1−2k02√k−√k−2√k0⎤⎥
⎥⎦. If det (adj A)+det(adj B)=106, then [k] is equal to
[Note: adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k]