If z1,z2,z3 and z4 are any four complex numbers such that |z1|<1π,|z2|=1,|z3|≤1 and z3=z2(z1−z4)¯¯¯¯¯z1z4−1. Then possible value of |z4| is /are
If |z1|=|z2|=|z3|=|z4|=1 and z1+z2+z3+z4=0 then least value of the expression E=|z1−z2|2+|z2−z3|2+|z3−z4|2+|z4−z1|2 is
If z1,z2 are conjugate complex numbers, and z3,z4 are also conjugate, then show that
argz3z2+argz1z4=0.
If (z1,z2) and (z3,z4) are two pairs of conjugate complex numbers, then show that
argz1z3+argz2z4=0.