Given, series
452−432+442−422+432−412+422−402+⋯15 terms
⇒(452−432)+(442−422)+(432−412)+⋯15 terms
=(45+43)(45−43)+(44+42)(44−42)+(43+41)(43−41)+....15terms
=(45+43)(2)+(44+42)(2)+(43+41)(2)+....15 terms
=2[(45+44+43+...15 terms)+(43+42+41+...15 terms)]
=2×152[2×45+(15−1)(−1)]+2×152[2×43+(15−1)(−1)]
=15(90−14)+15(86−14)
=15(76)+15(72)
=2220