wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral sec2x(secx+tanx)9/2dx equals (for some arbitrary constant K)

A
1(secx+tanx)11/2{11117(secx+tanx)2}+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1(secx+tanx)11/2{111+17(secx+tanx)2}+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1(secx+tanx)11/2{111+17(secx+tanx)2}+K
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1(secx+tanx)11/2{11117(secx+tanx)2}+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1(secx+tanx)11/2{111+17(secx+tanx)2}+K
Let secx+tanx=t
secx(secx+tanx)dx=dt
dx=21+t2dt
Now, t=⎜ ⎜ ⎜t+1t2⎟ ⎟ ⎟221+t2dtt9/2
=12(t9/2+t13/2)dt
=1227t72211t112+K
=t112{17t2+111}+K
=1(secx+tanx)11/2{111+17(secx+tanx)2}+K

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon