The correct option is C −1(secx+tanx)11/2{111+17(secx+tanx)2}+K
Let secx+tanx=t
⇒secx(secx+tanx)dx=dt
⇒dx=21+t2dt
Now, t=∫⎛⎜
⎜
⎜⎝t+1t2⎞⎟
⎟
⎟⎠221+t2dtt9/2
=12∫(t−9/2+t−13/2)dt
=12⎧⎪⎨⎪⎩−27t−72−211t−112⎫⎪⎬⎪⎭+K
=−t−112{17t2+111}+K
=−1(secx+tanx)11/2{111+17(secx+tanx)2}+K