wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=∣ ∣f(x)g(x)h(x)lmnabc∣ ∣ prove that

dydx=∣ ∣f(x)g(x)h(x)lmnabc∣ ∣

Open in App
Solution

To prove : dydx=∣ ∣f(x)g(x)h(x)lmnabc∣ ∣
Expanding determinant along R1

dydx=f(x)mnbcg(x)lnac+h(x)lmab

dydx=(mcbn)f(x)(lcan)g(x)+(lbam)h(x)

We need to prove that

dydx=(mcbn)f(x)(lcan)g(x)+(lbam)h(x)

Now,
y=∣ ∣f(x)g(x)h(x)lmnabc∣ ∣

Expanding determinant along R1

dydx=f(x)mnbcg(x)lnac+h(x)lmab

y=(mcbn)f(x)(lcan)g(x)+(lbam)h(x)

Differentiating w.r.t. x, we get

dydx=d((mcbn)f(x)(lcan)g(x)+(lbam)h(x))dx

dydx=d((mcbn)f(x))dxd((lcan)g(x)dx+d((lbam)h(x))dx

dydx=(mcbn)d(f(x))dx(lcan)d(g(x)dx+(lbam)d(h(x))dx

dydx=(mcbn)(f(x)(lcan)g(x)+(lbam)+h(x)

Hence, proved.


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon