We need to prove that
dydx=(mc−bn)f′(x)−(lc−an)g′(x)+(lb−am)h′(x)
Now,
y=∣∣
∣∣f(x)g(x)h(x)lmnabc∣∣
∣∣
Expanding determinant along R1
dydx=f(x)∣∣∣mnbc∣∣∣−g(x)∣∣∣lnac∣∣∣+h(x)∣∣∣lmab∣∣∣
y=(mc−bn)f(x)−(lc−an)g(x)+(lb−am)h(x)
Differentiating w.r.t. x, we get
dydx=d((mc−bn)f(x)−(lc−an)g(x)+(lb−am)h(x))dx
dydx=d((mc−bn)f(x))dx−d((lc−an)g(x)dx+d((lb−am)h(x))dx
dydx=(mc−bn)d(f(x))dx−(lc−an)d(g(x)dx+(lb−am)d(h(x))dx
∴dydx=(mc−bn)(f′(x)−(lc−an)g′(x)+(lb−am)+h′(x)
Hence, proved.