wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Express the matrix B=224134123 as the sum of a symmetric and a skew symmetric matrix.


Open in App
Solution

Given: B=224134123
B=211232443

Let P=12(B+B)
P=12224134123+211232443
P=12433362326
P=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢2323232313213⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
P=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢2323232313213⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥=P
P=P
P is a symmetric matrix.

Let Q=12(BB)
Q=12224134123211232443
Q=12015106560
Q=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢0125212035230⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Q=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢0125212035230⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢0125212035230⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥=Q
Q=Q
Q is a skew symmetric matrix.
Now,
P+Q=12(B+B)+12(BB)=B Thus, B is a sum of symmetric and a skew symmetric matrix.

Hence,
224134123B Given Matrix =⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢2323232313213⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥P Symmetric Matrix +⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢0125212035230⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥Q Skew Symmetric Matrix


flag
Suggest Corrections
thumbs-up
47
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon