The correct option is B −π2
Given :
tan−1√3−cot−1(−√3)
Let y=tan−1(√3)
⇒tany=√3
⇒tany=tan(π3)
We know that the range of the principal value branch of tan−1 is (−π2,π2).
∴y=π3⇒tan−1√3=π3
Let z=cot−1(−√3)
⇒cotz=−√3
⇒cotz=cot(−π6)
We know that the range of the principal value branch of cot−1 is (0,π).
∴z=π−π6=5π6
⇒cot−1(−√3)=5π6
Now tan−1√3−cot−1(−√3)
=π3−5π6=−π2
Hence, the correct option is (B).