wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If F(x)=cosxsinx0sinxcosx0001, show that F(x)F(y)=F(x+y).

Open in App
Solution

Given: F(x)=cosxsinx0sinxcosx0001
To show: F(x)F(y)=F(x+y)
Replacing x by y in F(x)
F(y)=cosysiny0sinycosy0001

Solving L.H.S.
F(x)F(y)
=cosxsinx0sinxcosx0001cosysiny0sinycosy0001

F(x)F(y)=(cosxcosysinxsiny)(cosxsinysinxcosy)0(sinxcosy+cosxsiny)(sinxsiny+cosxcosy)0001
We know that
[cosxcosysinxsiny=cos(x+y)sinxcosy+cosxsiny=sin(x+y)]
F(x)F(y)=cos(x+y)sin(x+y)0sin(x+y)cos(x+y)0001

Solving R.H.S.
F(x+y)
Replacing x by (x+y) in F(x)

F(x+y)=cos(x+y)sin(x+y)0sin(x+y)cos(x+y)0001=L.H.S.
Hence proved



flag
Suggest Corrections
thumbs-up
138
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon