(i) L.H.S=sin−1(2x√1−x2)
Substituting x=sinθ
sin−1(2x√1−x2)
=sin−1(2sinθ√1−sin2θ)
=sin−1(2sinθ√cos2θ)
=sin−1(2sinθ|cosθ|)
Given −1√2≤x≤1√2, so
⇒θ=sin−1x∈[−π4,π4]⇒cosθ>0
sin−1(2x√1−x2)=sin−1(2sinθ|cosθ|)
Now,
=sin−1(2sinθcosθ)
=sin−1(sin2θ)
∵−1√2≤x≤1√2
⇒θ=sin−1x∈[−π4,π4]
⇒2θ∈[−π2,π2]
⇒sin−1(sin2θ)
=2θ=2sin−1x
Hence proved.
(ii) L.H.S=sin−1(2x√1−x2)
Substituting x=cosθ
⇒sin−1(2x√1−x2)
=sin−1(2cosθ√1−cos2θ)
=sin−1(2cosθ√sin2θ)
=sin−1(2cosθ|sinθ|)
Given 1√2≤x≤1, so
⇒θ=cos−1x∈[0,π4]⇒sinθ>0
=sin−1(2cosθsinθ)
=sin−1(sin2θ)
∵1√2≤x≤1
⇒θ=cos−1x∈[0,π4]
⇒2θ∈[0,π2]
⇒sin−1(sin2θ)
=2θ=2cos−1x
Hence proved.