wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that :
(i) sin1(2x1x2)=2sin1x,12x12

(ii) sin1(2x1x2)=2cos1x,12x1

Open in App
Solution

(i) L.H.S=sin1(2x1x2)
Substituting x=sinθ
sin1(2x1x2)
=sin1(2sinθ1sin2θ)
=sin1(2sinθcos2θ)
=sin1(2sinθ|cosθ|)
Given 12x12, so
θ=sin1x[π4,π4]cosθ>0
sin1(2x1x2)=sin1(2sinθ|cosθ|)
Now,
=sin1(2sinθcosθ)
=sin1(sin2θ)
12x12
θ=sin1x[π4,π4]
2θ[π2,π2]
sin1(sin2θ)
=2θ=2sin1x
Hence proved.

(ii) L.H.S=sin1(2x1x2)
Substituting x=cosθ
sin1(2x1x2)
=sin1(2cosθ1cos2θ)
=sin1(2cosθsin2θ)
=sin1(2cosθ|sinθ|)
Given 12x1, so
θ=cos1x[0,π4]sinθ>0
=sin1(2cosθsinθ)
=sin1(sin2θ)
12x1
θ=cos1x[0,π4]
2θ[0,π2]
sin1(sin2θ)
=2θ=2cos1x
Hence proved.

flag
Suggest Corrections
thumbs-up
42
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon