If a,b denote the distinct real roots of the quadratic equation x2+20x−2020=0 and suppose c,d denote the distinct complex roots of the quadratic equation x2+20x+2020=0. Find the value of ac(a−c)+ad(a−d)+bc(b−c)+bd(b−d).
A
−160800
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
800
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
16000
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−160800 Given: x2+20x−2020=0 with distinct real roots a,b, and x2+20x+2020=0 with distinct complex roots c,d
From x2+20x−2020, a+b=−20,a⋅b=−2020⋯(i)
From x2+20x+2020, c+d=−20,c⋅d=2020⋯(ii)
The expression we have to find is ac(a−c)+ad(a−d)+bc(b−c)+bd(b−d) ⇒a2c−ac2+a2d−ad2+b2c−bc2+b2d−bd2 ⇒a2(c+d)−c2(a+b)−d2(a+b)+b2(c+d) ⇒(a2+b2)(c+d)−(a+b)(c2+d2)
We know that (x+y)2=x2+y2+2xy x2+y2=(x+y)2−2xy
Using this relation here ⇒(c+d)[(a+b)2−2ab]−(a+b)[(c+d)2−2cd ⇒(−20)[(−20)2−(2×(−2020))]−(−20)[(−20)2−2×2020] ⇒(−20)[400+4040]+20[400−4040] ⇒20[−400−4040+400−4040] ⇒−20×8040 ⇒−160800