The correct option is A 44
Given α,β,γ are the roots of x3+2x2+3x+3=0 then we have to form the equation whose roots are
αα+1,ββ+1,γγ+1
Let, y=αα+1,xx+1 express x in terms of y
⇒x=yy−1
So that the equation is
(y1−y)3+2(y1−y)2+3(y1−y)+3=0
⇒y3−5y2+6y−3=0 ... (i)
Let, αα+1=α′,ββ+1=β′,γγ+1=γ′
Thus α′,β′,γ′ are the roots of (i)
∴∑α′=5,∑α′β′=6,∑α′β′γ′=α′β′γ′=3
Now use the identity
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
=(a+b+c){(a+b+c)2−3(ab+bc+ca)}
Thus
α′3+β′3+γ′3=(α′+β′+γ′){(α′+β′+γ′)2−3(α′β′+β′γ′+γ′α′)}+3α′β′γ′
=(5)[(5)2−3(6)]+3(3)
=5[25−18]+9
=35+9=44