Step (1): Assume given statement
Let the given statement be P(n) i.e.,
P(n):1+2+3+4+...+n<18(2n+1)2
Step (2): Checking statement P(n) for n=1
Put n=1 in P(n), we get
P(1):1<18(2⋅1+1)2
⇒1<18⋅(3)2
⇒1<98
Thus P(n) is true for n=1
Step (3): P(n) for n=K.
Put n=K in P(n) and assume this is true for some natural number K i.e.,
P(k):1+2+3+4+⋯+K<18(2K+1)2 ⋯(1)
Step (4): Checking statement P(n) for n=K+1
Now, we shall prove that P(K+1) is true whenever P(K) is true.
Now, we have
(1+2+3+⋯+K)+(K+1)
<18(2K+1)2+(K+1) (using(1))
<18[(2K+1)2+8(K+1)]
<18[4K2+1+4K+8K+8]
<18[4K2+12K+9]
<18(2K+3)2
<18[2(K+1)+1]2
Hence, 1+2+3+⋯+K+K+1<18{2(K+1)+1}2
Thus, P(K+1) is true whenever P(K) is true.
Final answer :
Therefore, by the principle of mathematical induction, statement P(n) is true for all n∈N.