Given:
tan(sin−135+cot−132)
Putting sin−1(35)=x and cot−1(32)=y
Or sin(x)=35 and coty=32
sin(x)=35⇒cosx=√1−sin2x=45
⇒secx=54
⇒tan(x)=√sec2x−1=√2516−1=34 and
tany=1coty=23
⇒tanx=34 and tany=23
Now,
tan(sin−1(35)+cot−1(32))=tan(x+y)
=tanx+tany1−tanx⋅tany
=34+231−34×23=3(3)+2(4)4×34×3−3×24×3
=9+84×312−64×3=174×364×3=176