Given probability distribution:
X01234567P(x)0k2k2k3kk22k27k2+k
Part(i)
We know that,
Sum of probabilites in a probability
distribution=1
⇒∑70P(X)=1
⇒P(X=0)+P(X=1)+P(X=2)
+P(X=3)+P(X=4)+P(X=5)
+P(X=6)+P(X=7)=1
⇒0+k+2k+2k+3k+k2+2k2
+7k2+k=1
⇒9k+10k2=1
⇒10k2+9k−1=0
⇒10k2+10k−k−1=0
⇒10k(k+1)−1(k+1)=0
⇒(10k−1)(k+1)=0
So, k=110&k=−1
Since k is a probability, it cannot be negative,
Hence,k=110
Part(ii)
From given table,
P(X<3)=P(X=0)+P(X=1)+P(X=2)
P(X<3)=0+k+2k
P(X<3)=3k
P(X<3)=3×110 (∵k=110)
∴P(X<3)=310
Part(iii)
P(X>6)=P(X=7)
P(X>6)=7k2+k
P(X>6)=7(110)2+110 (∵k=110)
P(X>6)=7×1100+110
P(X>6)=7+10100
∴P(X>6)=17100
Part(iv)
P(0<X<3)=P(X=1)+P(X=2)
⇒P(0<X<3)=k+2k
⇒P(0<X<3)=3k
⇒P(0<X<3)=3×110 (∵k=110)
∴P(0<X<3)=310