wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A random variable X has the following probability distribution:
XP(X)001k22k32k43k5k262k277k2+k

Determine:
(i)k
(ii)P(X<3)
(iii)P(X>6)
(iii)P(0<X<3)

Open in App
Solution

Given probability distribution:
X01234567P(x)0k2k2k3kk22k27k2+k
Part(i)
We know that,
Sum of probabilites in a probability
distribution=1

70P(X)=1

P(X=0)+P(X=1)+P(X=2)
+P(X=3)+P(X=4)+P(X=5)
+P(X=6)+P(X=7)=1
0+k+2k+2k+3k+k2+2k2
+7k2+k=1
9k+10k2=1
10k2+9k1=0
10k2+10kk1=0
10k(k+1)1(k+1)=0
(10k1)(k+1)=0
So, k=110&k=1
Since k is a probability, it cannot be negative,

Hence,k=110

Part(ii)
From given table,
P(X<3)=P(X=0)+P(X=1)+P(X=2)
P(X<3)=0+k+2k
P(X<3)=3k

P(X<3)=3×110 (k=110)

P(X<3)=310

Part(iii)
P(X>6)=P(X=7)
P(X>6)=7k2+k

P(X>6)=7(110)2+110 (k=110)

P(X>6)=7×1100+110

P(X>6)=7+10100

P(X>6)=17100

Part(iv)
P(0<X<3)=P(X=1)+P(X=2)

P(0<X<3)=k+2k
P(0<X<3)=3k

P(0<X<3)=3×110 (k=110)

P(0<X<3)=310

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon