Using elementary transformations, Find the inverse of matrix [1−123] if it exists.
Open in App
Solution
Let A=[1−123]
We know that A=IA ⇒[1−123]=[1001]A
Applying R2→R2−2R1 ⇒[1−12−2(1)3−2(−1)]=[100−2(1)1−2(0)]A ⇒[1−105]=[10−21]A
Applying R2→15R2 ⇒⎡⎣1−10555⎤⎦=⎡⎣10−2515⎤⎦A ⇒[1−101]=⎡⎣10−2515⎤⎦A
Applying R1→R1+R2 ⇒[1+0−1+101]=⎡⎢
⎢⎣1−250+15−2515⎤⎥
⎥⎦A ⇒[1001]=⎡⎢
⎢⎣3515−2515⎤⎥
⎥⎦A ⇒I=⎡⎢
⎢⎣3515−2515⎤⎥
⎥⎦A
This is similar to I=A−1A
Thus, A−1⎡⎢
⎢⎣3515−2515⎤⎥
⎥⎦