The correct option is B 1
Equation of the line passing through the point P(1,4,4) is x−1a=y−4b=z−3c....(i)
If equation (i) is perpendicular to lines x−12=y+31=z−24
and x+23=y−42=z+1−2
∴2a+b+4c=0....(ii)
and 3a+2b−2c=0.....(iii)
Solving (ii) and (iii),
a−2−8=−b−4−12=c4−3
⇒a−10=b16=c1=λ, say
∴a=−10λ,b=16λ,c=λ
Hence the equation of the line is
x−1−10λ=y−416=z−3λ
⇒x−1−10=y−416=z−31=r, say ....(iv)
∴ Any point Q on line (ii) is
(1−10r,16r+4,r+3)
Distance of Q from P(1,4,3)=(1−10r−1)2+(16r+4−4)2+(r+3−3)2
⇒r2(100+256+1)=357
⇒r2=1
⇒r=±1
∴ The point Q is (-9, 20, 4) and or , (11, -2, 2)
∴a1+a2+a3=−9+20+4
or, 11−12+2
= 15 or 1