(i): Given: [43x5]=[yz15]
Since matrices are equal,
Comparing corresponding terms,
∴x=1,y=4,z=3
(ii): Given: [x+y25+zxy]=[6258]
Since matrices are equal.
Comparing corresponding terms,
x+y=6 ⋯(1)
xy=8 ⋯(2)
5+z=5 ⋯(3)
⇒5+z=5
⇒z=5−5
⇒z=0
From equation (1),
x+y=6
⇒x=6−y
Put in equation (2)
⇒(6−y)y=8
⇒6y−y2=8
⇒y2−6y+8=0
⇒y2−4y−2y+8=0
⇒(y−2)(y−4)=0
⇒y=2 or y=4
Putting values of y in equation (1) i.e. x+y=6
When y=2→x=4 or y=4→x=2
Therefore,
x=2,y=4,z=0 or x=4,y=2,z=0
(iii): Given: ⎡⎢⎣x+y+zx+zy+z⎤⎥⎦=⎡⎢⎣957⎤⎥⎦
Since matrices are equal,
Comparing corresponding elements,
x+y+z=9 ⋯(1)
x+z=5 ⋯(2)
y+z=7 ⋯(3)
From equation (2)
x+z=5
Putting this in (1), we get
y=4 ⋯(4)
From equation (3)
Putting this in (1), we get
x=2 ⋯(5)
Using (4) and (5) in (1), we get
z=3
∴x=2,y=4 and z=3.