Given: tan−1(1√x2−1),|x|>1
Substituting x=secθ
⇒tan−1(1√x2−1)=tan−1(1√sec2θ−1)
⇒tan−1(1√x2−1)=tan−1⎛⎜
⎜⎝1√(1+tan2θ)−1⎞⎟
⎟⎠
⇒tan−1(1√x2−1)=tan−1(1√tan2θ)
⇒tan−1(1√x2−1)=tan−1(1tanθ)
⇒tan−1(1√x2−1)=tan−1(cotθ)
⇒tan−1(1√x2−1)=tan−1(tan(π2−θ))
⇒tan−1(1√x2−1)=π2−θ
∴x=secθ
⇒θ=sec−1x
So,
⇒tan−1(1√x2−1)=π2−θ=π2−sec−1x