wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Write the following functions in the simplest form :
tan1(1x21),|x|>1

Open in App
Solution

Given: tan1(1x21),|x|>1
Substituting x=secθ
tan1(1x21)=tan1(1sec2θ1)
tan1(1x21)=tan1⎜ ⎜1(1+tan2θ)1⎟ ⎟
tan1(1x21)=tan1(1tan2θ)
tan1(1x21)=tan1(1tanθ)
tan1(1x21)=tan1(cotθ)
tan1(1x21)=tan1(tan(π2θ))
tan1(1x21)=π2θ
x=secθ
θ=sec1x
So,
tan1(1x21)=π2θ=π2sec1x


flag
Suggest Corrections
thumbs-up
12
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon