Direction of P,
→v1=→A×→B|→A×→B|=(^i+^j)×(^j+^k)|(^i+^j)×(^j+^k)|=^i−^j+^k√3
Direction of Q,
→v2=→A×→C|→A×→C|=(^i+^j)×(−^i+^j)|(^i+^j)×(−^i+^j)|=^k
Angle between →v1 and →v2,
cosθ=→v1.→v2|→v1||→v2|=(^i−^j+^k√3).(^k)(1)×(1)=1/√3(1)(1)=1√3
⇒θ=cos−1(1√3)
Given, θ=cos−1(1√x)
∴x=3