Given: P=[10−2−51]
We know that P=IP P=[10−2−51]=[1001]P
Applying R1→110R1 ⇒⎡⎣1010−210−51⎤⎦=⎡⎣11001001⎤⎦P ⇒⎡⎣1−15−51⎤⎦=⎡⎣110001⎤⎦P
Applying R2→R2+5R1 ⇒⎡⎢
⎢
⎢⎣1−15−5+5(1)1+5(−15)⎤⎥
⎥
⎥⎦=⎡⎢
⎢
⎢⎣11000+5(110)1+5(0)⎤⎥
⎥
⎥⎦P ⇒⎡⎣1−1500⎤⎦=⎡⎢
⎢⎣1100121⎤⎥
⎥⎦P ∵ Left hand side matrix involves all zeroes in the second row. ∴P−1 does not exist.