R.H.S.=12cos−1(1−x1+x)
Put x=tan2θ in given equation
=12cos−1(1−tan2θ1+tan2θ)
=12cos−1⎛⎜
⎜
⎜
⎜⎝1−sin2θcos2θ1+sin2θcos2θ⎞⎟
⎟
⎟
⎟⎠
=12cos−1(cos2θ−sin2θcos2θ+sin2θ)
=12cos−1(cos2θ−sin2θ1)
=12cos−1(cos2θ)
=12×2θ=θ ⋯(i)
12cos−1(1−x1+x)=θ
x=tan2θ
⇒√x=tanθ
⇒tan−1√x=θ ⋯(ii)
From (i) and (ii),
tan−1√x=12cos−1(1−x1+x)
Hence proved.