wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
tan1x=12cos1(1x1+x),x[0,1]

Open in App
Solution

R.H.S.=12cos1(1x1+x)
Put x=tan2θ in given equation
=12cos1(1tan2θ1+tan2θ)
=12cos1⎜ ⎜ ⎜ ⎜1sin2θcos2θ1+sin2θcos2θ⎟ ⎟ ⎟ ⎟
=12cos1(cos2θsin2θcos2θ+sin2θ)
=12cos1(cos2θsin2θ1)
=12cos1(cos2θ)
=12×2θ=θ (i)

12cos1(1x1+x)=θ
x=tan2θ
x=tanθ
tan1x=θ (ii)
From (i) and (ii),
tan1x=12cos1(1x1+x)
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon