nC0 + 2.nC1 + 3.nC2 +..............(n+1)nCn =
(n+2)
When we observe terms, each term is of the form (r+1)nCr.
We can write the sum as
n∑r=0(r+1) nCr = n∑r=0 r nCr + n∑r=0 nCr
nCr = nrn−1Cr−1
r nCr = n n−1Cr−1
⇒ n∑r=0(r+1) nCr = n∑r=0rnCr + n∑r=0 nCr
= n∑r=0 n × n−1Cr−1 + n∑r=0 nCr
= n × n∑r=0 n−1Cr−1 + n∑r=0 nCr
n∑r=0 nCr = 2n, n∑r=0 n−1Cr−1 = 2n−1
⇒ n∑r=0(r+1) nCr = n2n−1 + 2n
= 2n−1 (n+2)