The correct option is
B 1−(q−p)n2In the expansion of (x+a)n
if the sum of odd - term be 'P' and sum of even be'Q'
(x+a)n=xn+nC1xn−1a+nC2xn−2a2+nC3xn−3a3+...........+nCnan
=(nn+nC2xn−2a2+........)+(C1xn−1a+nC3xn−3a3+.........)
(x+a)n=P+Q−−−−−−−>(1) and
(x−a)n = xn−nC1xn−1a+nC2xn−2a2−nC3xn−3a3+......+(−1)nnCnan
=(xn+nC2xn−2a2+......)−(nC1xn−1a+nC3xn−3a3+........)
(x−a)n= P−Q----------> (2)
Hence sum of t add terms =P=(x+a)n−(x−a)n
Probability of getting head = p
Probability of getting tail = 1-p =q
Now, P(odd no. of heads in N tosses = P(1 head)+P(3 heads) +P(5 heads)+.....
=NC1pqN−1+NC3p3qN−3+NC5p5qN−5+..
=(p+q)N−(p−q)N2
Using the property of binomial theorem
as shown in the image below
since p+q=1
=1−(p−q)N2