nLt→∞[1(1+n3)+4(8+n3)+9(27+n3)+.......n2(n3+n3)] nLt→∞∑nr=1r2r3+n3=nLt→∞∑nr=11n(rn)2(rn)3+1 =∫10x2x3+1dx=13∫21dx31+x3 =13log(1+x3)∫10 =13[log(2)] =13log2