nLt→∞∑nr=1(n+rn2+r2)=nLt→∞∑nr=11n⎛⎜ ⎜⎝1+rn1+(rn)2⎞⎟ ⎟⎠=∫10(1+x1+x2)dx=∫1011+x2dx+12∫10dx21+x2=tan−1x∫10+12log(1+x2)∫10=π4+12log(2)
The value of limn→∞[n1+n2+n4+n2+n9+n2+⋯+12n] is equal to [Bihar CEE 1994]