nLt→∞∑n−1r=01√n2−r2=nLt→∞∑nr=01n⋅1√1−(rn)2 It is in the form of nLt→∞∑nr=01nf(rn)=∫10f(x)dx ∫101√1−x2dx =[sin−1(x)+c]∫10 =sin−1(1)=π2
The points of discontinuity of the function f(x)=limn→∞(2sinx)2n3n−(2cosx)2n are given by
Complete set of values of x satisfying cos2x > |sinx|, x ∈(−π2,π) is