(i) Let A=(−1,−1),B=(1,0),C=(−1,2),D=(−3,0)
AB=√[1−(−1)]2+[0−(−2)]2=√(2)2+(2)2=√8=2√2unit
BC=√(−1−1)2+(2−0)2=√(−2)2+(2)2=√8=2√2unit
CD=√[−3−(−1)]2+[0−2]2=√(−2)2+(−2)2=√8=2√2unit
AD=√[−3−(−1)]2+[0−(−2)]2=√(−2)2+(2)2=√8=2√2unit
Now, let us calculate the diagonals.
AC=√[−1(−1)]2+[2−(−2)]2=√0+(4)2=√16=4unit
BD=√(−3−1)2+(0−0)2=√(−4)2=√16=4unit
Here, AB=BC=CD=AD and AC=BD
Since, all sides are equal and diagonals are equal, so given quadrilateral is a square.
(ii)
Let A=(−3,5),B=(3,1),C=(0,3) and D=(−1,−4)
AB=√[3−(−3)]2+[1−5]2=√(6)2+(−4)2=√36+16=√52unit
BC=√(0−3)2+(3−1)2=√(−3)2+(2)2=√9+4=√13unit
CD=√(−1−0)2+(−4−3)2=√(−1)2+(−7)2=√1+49=√50=5√2unit
AD=√(−1+3)2+(−4−5)2=√(2)2+(−9)2=√4+81=√85unit
Here,
AC≠BC≠CD≠DASince, sides are not equal, thus only a general and not a specific quadrilateral
such as square or parallelogram is formed.
(iii)
Let A=(4,5),B=(7,6),C=(4,3),D=(1,2)
AB=√(7−4)2+(6−5)2=√(3)2+(1)2=√9+1=√10unit
BC=√(4−7)2+(3−6)2=√(−3)2+(−3)2=√9+9=√18unit
CD=√(1−4)2+(2−3)2=√(−3)2+(−1)2=√9+1=√10unit
AD=√(1−4)2+(2−5)2=√(−3)2+(−3)2=√9+9=√18unit
Now let us calculate the diagonals
AC=√(4−4)2+(3−5)2=√(0)2+(−2)2=√0+4=√4=2unit
BD=√(1−7)2+(2−6)2=√(−6)2+(−4)2=√36+16=√52=2√13unit
Here, AB=CD and BC=AD
AC≠BD
Here, opposite sides are equal but diagonals are not equal, thus with the given points a parallelogram is formed.