Lets identify the types of Quadrilaterals based on their lengths of sides and their lengths of diagonals.
We know that, the distance between two points A(x1,y1), B(x2,y2) is √(x2−x1)2+(y2−y1)2.
(i) (−1,−2),(1,0),(−1,2),(−3,0)
Let the given points are A(−1,−2), B(1,0), C(−1,2)and D(−3,0) Then,
AB=√(1+1)2+(0+2)2=√22+22=√4+4=√8
BC=√(−1−1)2+(2−0)2=√(22+22)=√4+4=√8
CD=√((−3)−(−1))2+(0−2)2=√22+(−2)2=√4+4=√8
DA=√(−3)−(−1))2+(0−(−2))2=√(−2)2+22=√4+4=√8
AC√((−1)−(−1))2+(2−(−2))2=√0+42=√16=4
BD=√(−3−1)2+(0−0)2=√(−4)2=√16=4
Since the four sides AB,BC,CD and DA are equal and the diagonals AC and BD are equal .
∴ Quadrilateral ABCD is a square.
(ii) (−3,5),(3,1),(0,3),(−1,−4)
Let the given points are A(−3,5),B(3,1),C(0,3) and D(−1,−4)Then
AB=√(−3−3)2+(5−1)2=√(−6)2+42=√36+16=√52
BC=√(3−0)2+(1−3)2=√(32+(−2)22)=√9+4=√11
CD=√(0−(−1))2+(3−(−4))2=√12+(7)2=√1+49=√50
DA=√(−1)−(−3))2+((−4)−5))2=√(2)2+(−9)2=√4+81=√85
Here AB≠BC≠CD≠DA
∴ it is a quadrilateral.
(iii) (4,5),(7,6),(4,3),(1,2)
Let the given points are A(4,5),B(7,6),C(4,3) and D(1,2)Then
AB=√(7−4)2+(6−5)2=√32+12=√9+1=√10
BC=√(4−7)2+(3−6)2=√((−3)2+(−3)2)=√9+9=√18
CD=√(1−4)2+(2−3)2=√(−3)2+(−1)2=√9+1=√10
DA=√(1−4)2+(2−5)2=√(−3)2+(−3)2=√9+9=√18
AC=√(4−4)2+(3−5)2=√0+(−2)2=√4=2
BD=√(1−7)2+(2−6)2=√(−6)2+(−4)2=√36+16=√52
Here AB=CD,BC=DA . But AC≠BD
Hence the pairs of opposite sides are equal but diagonal are not equal so it is a parallelogram.