Network is described by the state model as
.x1=x2
.x2=−9x1−7x2+u
y=x1+2x2
The steady state value of response for step input is
(c)
.x1=x2
.x2=−9x1−7x2+u
y=x1+2x2
(.x1.x2]=(01−9−7](x1x2]+(01]uy = [ 1 2 ](x1x2]
Transfer function = C[sI−A]−1B
sI − A=(s00s]−(01−9−7]=(s−19s+7]
[sI −A]−1 = 1s2+7s+9(s+71−9s]
T.F. = 1s2+7s+9[ 1 2] (s+71−9s](01]
T.F.=2s+1s2+7s+9
U(s)=1s
Y(s)=(2s+1)s(s2+7s+9)
Steady state value Y(s)
lims→0sY(s)=lims→02s+1s2+7s+9=19=0.11
Alternate solution:
In s domain,
X2=sX1
−9X1−7X2+U=sX2
Y=X1+2X2,
U=1s
Then , Y=2s+1s2+7s+9
Steady state value y(∞)=sY|s→0=19=0.11