The given function is e x ( 1+x ) cos 2 ( e x x) .
∫ e x ( 1+x ) cos 2 ( e x x) dx (1)
Let, x e x = t
Now differentiate both the sides,
( x e x + e x .1 )dx=dt e x ( x+1 )dx=dt
Substitute values of t and dt in equation (1).
∫ e ( 1+x ) cos 2 ( e x x) dx = ∫ dt cos 2 t = ∫ sec 2 t =tant+c =tan( e x x)+c
Hence, the integral of the function e x ( 1+x ) cos 2 ( e x x) is tan( e x x)+c, and option B is correct.
Prove that cotθ+cosecθ−1cotθ−cosecθ+1=cotθ+ cosecθ