Niobium crystallises in body - centred cubic structure. If density is 8.55 g cm−3. Calculate atomic radius of niobium using its atomic mass 93 u.
Step I Calculation of edge length of unit cell(a)
Atomic mass of the element (M)=93 g mol−1
Number of particles in bcc type unit cell (Z) = 2
Mass of the unit cell =Z×MNA=2×(93 g mol−1)(6.022×1023mol−1)
=30.89×10−23g
Density of unit cell (d) =8.55 g cm−3
Volume of unit cell (a3)=Mass of unit cellDensity of unit cell
=(30.89×10−23g)(8.55 g cm−3)
=36.16×10−24cm3
Edge length of unit cell (a) =(36.13×10−24cm3)13
=3.31×10−8cm
Step II Calculation of radius of unit cell (r)
For bcc structure, r=√3a4
=√3×(3.31×10−8cm)4
=1.43×10−8cm
=143 pm