The correct option is
A 41We know that, the number of non-negative integral solutions to
x1+x2+...+xn=r is (n+r−1Cr)
Hence for A+B+C=10
Total number of ways =10+3−1C10=12C10
Now, we will have to subtract the cases where A>6,B>7,C>8
Case−I:
A>6,B>0,C>0⇒ Give A=7 already and then find the total non-negative integral solution.
∴A′+B+C=10
Bur, A′=A+7
⇒A+B+C+7=10⇒A+B+C=3
∴ Total no. of ways =3+3−1C3=5C3
Case−II:
A>0,B>7,C>0 ; Similarly as above
⇒A+B+C=2
⇒ Total no. of ways =3+2−1C2=4C2
Case−III:
A>0,B>0,C>8
⇒A+B+C=1
⇒ Total no. of ways =3+1−1C1=3C1
∴ Total number of ways =12C10−(5C3+4C2+3C1)
Hence, correct answer is 41