The correct options are
A (1,2)
C √2
Equation of normal to hyperbola xy=64 at (8t,8t) which passes throught (2,4) is-
8t4−2t3+4t−8=0
this equation has 4 roots t1,t2,t3 and t4
t1t2t3t4 = -1
Let equation of circle be x2+y2−2gx−2fy+e=0
If (8t,8t) lies on this cirlce
t1t2t3t14=1 …(2)
From (1) & (2) ⇒t4=−t14
& t1t2t3t4(1t1+1t2+1t3+1t4)=−12⇒1t1+1t2+1t3+1t4=12 …(3)
t1t2t3t4(1t1+1t2+1t3+1t4)=−16f64=f4⇒1t1+1t2+1t3+1t4=f2 …(4)
Equation (3)-(4)
1f4−1f14=12−f4⇒1f4+1f4=12−f4⇒2f4=(2−f4) …(5)
t1+t2+t3+t4=14
subtract t1+t2+t3+t4=g4t4−t14=1−g4
2t4=1−g4 …(6)
Multiplying equation (5) & (6)
4=(2−f4×1−g4)
Centre →(g,f)=(h,k)
64=(h-1)(k-2)
Since it is Rectangular hyperbola so eccentity is √2