P≡(am21, −2am1)
Q≡(am22, −2am2)
R≡(am23, −2am3)
Focus, S≡(a, 0) and let A≡(h, k)
⇒SP=√(a−am21)2+(2am1)2
=a√(1+m21)2=a(1+m21)
Similarly, SQ=a(1+m22) and
SR=a(1+m23)
Equation of normal is y=mx−2am−am3
Since it passes through A,
k=mh−2am−am3
⇒am3+m(2a−h)+k=0
It is a cubic equation with roots, m1, m2 and m3
Sum of the roots, m1+m2+m3=0
m1m2+m2m3+m3m1=h−2aa
m1m2m3=ka
Now, |SP||SQ||SR|=a3(1+m21) (1+m22) (1+m23)
=a3[1+(∑m1)2−2∑m1m2+(∑m1m2)2−2m1m2m3∑m1+(m1m2m3)2]
=a3[1+0+2(h−2a)a+(h−2a)2a2−0+k2a2]
=a[k2+(h−a)2]
=a(SA)2
⇒n=1