wiz-icon
MyQuestionIcon
MyQuestionIcon
9
You visited us 9 times! Enjoying our articles? Unlock Full Access!
Question

NOTE- this question is not related to the topic which I have selected.
M is any point in the plane of triangle ABC. prove that AM² + BM² + CM² = AG² + BG² + CG² + 3 MG² , where G is centroid of triangle ABC.

Open in App
Solution

Let the coordinates of A, B and C be (x1.y1), (x2.y2) and (x3.y3)
Then coordinates of centroid G will be ((x + x2 + x3)/3, (y1 + y2 + y3)/3 )
Let us the assume that centroid lies on the origin
⇒ x + x2 + x3 = 0 and y1 + y2 + y3 = 0
Let the coordinates of point M be (x, y)
We have to prove AM2 + BM2 + CM2 = GA2 + GB2 + GC2 + 3GM2
Now, L.H.S. = MA2 + MB2 + MC2
(x – x1)2 + (y – y1)2 + (x – x2)2 + (y – y2)2 + (x – x3)2 + (y – y3)2
= 3x2 + 3y2 + x12 + x22 + x32 + y12 + y22 + y32 – 2x (x1 + x2 + x3) – 2y(y1 + y2 + y3)
= 3x2 + 3y2 + x12 + x22 + x32 + y12 + y22 + y32
R.H.S. = GA2 + GB2 + GC2 + 3GM2

= (x1 – 0)2 + (y1 – 0)2 + (x2 – 0)2 + (y2 – 0)2 + (x3 – 0)2 + (y3 – 0)2 + 3[(x – 0)2 + (y – 0)2]
= x12 + y12 + x22 + y22 + x32 + y32 + 3(x2 + y2)
= 3x2 + 3y2 + x12 + x22 + x32 + y12 + y22 + y32
= L.H.S.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Bulls Eye View of Geometry
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon