The correct option is A 1
If x<0,|x|=−x, tan1x<0
So |tan−1x|=−tan−1x.
∴tan |tan−1x|=tan(−tan−1x)=−tan tan−1x=−x
and for x≤0,tan|tan−1x|=tan tan−1x=x.
∴tan|tan−1x|=|x|.∴ (i) is correct.
Similarly, (ii) and (iv) are correct.
In (iii), Let x=3π4,tan−1|tanx|=tan−1|−1|
=tan−11=π4≠∣∣3π4∣∣=3π4.
Hence, there is one false relation.