The correct option is C 2
log0.5x(x2)−14log16x(x3)+40log4x√x=0
⇒x>0, x≠2, x≠116, x≠14
Now,
logxx2logx(x2)−14⋅logxx3logx16x+40⋅logx√xlogx4x=0
⇒21−logx2−14⋅34logx2+1+40⋅1/22logx2+1=0
Let y=log2x
⇒11−1/y−214/y+1+102/y+1=0
⇒yy−1−21y4+y+10y2+y=0
⇒−5y(2y2−3y−2)(y−1)(4+y)(2+y)=0
⇒y(2y+1)(y−2)=0
⇒y=−12,0,2
⇒log2x=−12 or log2x=0 or log2x=2⇒x=1√2,1,4
Only two integral solutions.