The correct option is
D 8We nave the equation........................
x2−10x+25sgn(x2+4x−32)≤0
first we solve,
x2−10x+25sgn(x2+4x−32)≤0⇒x2+4x−32=(x+8)(x−4)if,sgn(x2+4x−32)=1x<−8orx>40x=4,−8−1x∈(−8,4)letsthevalueoffunctionis1,sgn(f(x)=1⇒x2−10x+25≤0⇒(x−5)2≤0,∴x=5and,sgn(f(x)=0⇒x2−10x+25≤0⇒x2−10x≤0Again,if,valueofx∈[0,10]∴x=4Again,sgn(f(x)=−1equnis,x2−10x−25≤0⇒x=10±√100+1002⇒=5+5√2thatmeans,thevalueofx∈[5−5√2,5+5√2][−2.1........................12.1]Now,integeris[−2,−1,0,1,2,3,––––––––––––––––4,5,............13]so,thattotalno.ofinteger(x=8),thecorrectoptionisD.